RG Methods in Statistical Field Theory:
Quiz 7 Solution
Friday, November 24, 2006

We have a d-dimensional, n = 1 Landau-Ginzburg model, described by the Hamiltonian:
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In working out the RG transformation for this model, consider the following O(u?) diagram:
a3 6

q1 % q2

a5 as

Note that the legs have no indices, since we are working with an n = 1 component model.
(a) What is the multiplicity M of this diagram?

Answer: There are 4 ways of choosing a triplet of legs on the first vertex; there are 4 ways of
choosing a triplet of legs on the second vertex. There are 3! = 6 ways of connecting these two
triplets together. Thus M =4 x 4 x 6 = 96.

(b) The integral for this diagram has the form:
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Write down an integral expression for I (ql, q2), but do not evaluate it.

Answer:
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(c) Is the zeroth order term in the Taylor expansion of I(qy,qz) nonzero? (Make an argument;
do not actually calculate it.) If it is nonzero, to which term in the effective Hamiltonian H does
it contribute?

Answer: When q; = g2 = 0, both delta functions in 7(q;, q2) become equal to: d(qs+qs+qs).
Even though q3, q4, and q5 are fast modes, it is possible to satisfy the condition q3+q4+q; = 0.
Hence the zeroth order term in the Taylor expansion is nonzero. Since there are two external
legs, it contributes to the 7 term in H.



