RG Methods in Statistical Field Theory:
Quiz 4 Solution
Friday, October 20, 2006

Consider a d-dimensional system with an n = 1 component order parameter m(x). There is a
mean-field solution mg, and fluctuations away from the mean-field solution m(x) = mo+¢(x)
are described by the Fourier-transformed Hamiltonian:
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Here ¢ > 0 is a constant, and ¢ is the correlation length.

(a) We are interested in the correlation function for the fluctuations:

G(x,x) = (p(x)o(x)) — (o(x))(¢(x))
Assume the system is translationally invariant, so that G(x,x’) = G(x — x’). What is

the Fourier-transformed correlation function G(q) for the Hamiltonian above? (No long
calculations are necessary. You can write it down by inspection.)

Answer: The partition function for this system is:
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This has the Gaussian functional integral form discussed in class, with K(q) = Bc(q* +£72).
Thus the correlation function is given by:
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(b) Now do an inverse Fourier transform and write down an integral for the same-site

correlation function G(x,x). (Do not evaluate the integral.) This measures the magnitude

of fluctuations at a site x. Show that for d > 2, we can approximate the integral and write
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where S, is the area of a d-dimensional unit sphere, and A is a large cutoff in g-space. Hint:

Non-dimensionalize the integral using the variable y = ¢¢.
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Making the change of variables y = ¢¢, and multiplying numerator and denominator by &2,
we find:
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