RG Methods in Statistical Field Theory:
Problem Set 8
due: Friday, November 24, 2006

In class we saw that second-order RG generated additional terms in the Landau-Ginzburg
Hamiltonian, and I claimed that all these terms were irrelevant. To try to understand this, let
us consider a d-dimensional system with an n-component order parameter m(x), described
by a general Hamiltonian ‘H = H, + U, where the Gaussian part H is given by:

1
Ho = /ddx 3 (rm2 +c(Vm)? + L(V?*m)? + - )
and the non-Gaussian perturbation has the form:
U= /dd’x (um* + vm*(Vm)? + - -ugm® + - - +ugm® + - - -)

Here m?* = (m - m)* and (Vm)? = 9;m;0;m;. Formally there are an infinite number of
parameters, but we will concentrate on a represenative few: r, ¢, L, u, v, ug, ug. It will be
easy to generalize the results for these terms to any other term. The Fourier-transformed
Hamiltonian becomes:

diq 1

Ho = /W 3 (7" + cq2 + Lq4 + - ) m;(q)mi(—q)

U= U/ é:;d ce é:;d mi(‘h)mz‘(%)my‘(Clg)mj(q4)(27r)d5(d)(q1 + 4 qq)

+ v/ é:)ld e é:)‘ld (as - aa)ma(au)ms(qe)m; (qs)m; (qs) (27)46D (qq + - - - + qu)

+ ug/ é:)ld . é:;d ma(q)mi(qe) - - - ma(qr)my(gs) (2m) 6@ (qu + - + qs)

We will represent the terms in U through the following vertex diagrams (we leave off the q
labels for simplicity):
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The dashed legs in the v vertex distinguish the q3 and g4 modes, which have a (qs - qa)
factor in the integral.



We construct the RG transformation in the standard way shown in class: the Gaussian
Hamiltonian H, can be separated into slow mode and fast mode portions, Hy = Ho< + Ho>,
but this cannot be done for U, which mixes fast and slow modes. We get an effective
Hamiltonian H = Ho — % In(e=Y)¢~, with new parameters 7, ¢, L, @, , Ug, Us, . ... Before
we look at the RG flows of these parameters, let us first derive a basic fact about diagrams.

(a) Consider the following diagram at order O(u?), which appears to contribute to g:

j? a3 k7q4
iqu - l7q5
J,qar k,QS
I, l,qe

Write down the integral for this diagram (do not worry about any numerical prefactors from
the multiplicity or the cumulant expansion), and argue that the contribution to g is actually
zero. Hint: Remember that if there is some part of the integral that depends on the values
of the slow mode momenta qq, ..., qs, it is only the zero-th order term of the corresponding
Taylor expansion that contributes to ug. When looking at the result, think carefully about
the range of integration for the various q.

This diagram is part of a larger class called one-particle reducible diagrams, all of which have
the property that they can be divided into two disconnected parts by cutting a single internal
line. Part (a) should convince you that for any such diagram, momentum conservation means
that it has no contribution at zero-th order in its Taylor series (i.e. when all the external
momenta are set to zero).

(b) Now we will consider the parameters 7, ¢, L, 4, 0, Ug, and ug individually. For any given
parameter K, the equation for K will have the form:

K=K+0(-)

We would like to know the order represented by O(---). Thus we ask the question: for
each parameter, what is the lowest order in the cumulant expansion of —%<6*5U>0> that we

get a nonzero contribution to the effective Hamiltonian 7 (other than the contribution K)?
What types of diagrams are responsible for the nonzero contribution at this order? (Draw
the basic shapes, leaving out momenta and index labels; construct diagrams only from the
vertices we showed above; do not count the multiplicities or evaluate any of the diagrams.)
To give you a sense of what I want, here is the answer for 7:

Sample answer: The first nonzero contribution to 7 other than r comes from the first order
part of the cumulant expansion. This contribution consists of diagrams of orders O(u), O(v),
O(ug), and O(ug). We write the equation for 7 as:

r=r+ O(u,v, ug, ug)
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The nonzero contributing diagram types are:

O(u): _O_ OW): ——  O(ug): O(ug): %

Do a similar analysis for each of the other parameters: ¢, L, u, 0, ug, and us.

(c) After substituting q' = bq and m’(q’') = ("'m(q) into the effective Hamiltonian, write
down the RG equations for 7/, ¢, L', v/, V', ug, uf, in terms of 7, ¢, L, @, 9, g, us. How do we
choose the constant (7 We would like to fix ¢ = ¢, and it is clear from part (b) that there are
higher-order corrections, é = ¢+ O(---). Thus you should find that ¢ = b@*+2/2(14O(---)).
Determine the order of the corrections to (. When we substitute ¢ into the RG equations,
these corrections will only be important at higher orders than we are interested in, so we
can still use ¢ ~ b(@2/2. Now we are ready to find the infinitesimal recursion relations. Let
b=1+40¢ and d = 4 — ¢, and show that the flow equations can be written as:

% = 2r + O(u, v, ug, ug)

% = 9L+ O(uQ, uw, v?, .. )

% = eu — Bu? + O(uv,v?,...)

% = (=24 v+ O(u?, uv,v?,...)
o _ (5 4 20+ O
% = (=44 3e)us + O(ug, ug, ..., u’)

Note that for simplicity not all the contributing combinations of u, v, ug, ug are written
explicitly in the O(---) terms. There are also two special features which will be useful
later: (i) the O(u?) contribution to du/d¢ is written directly as —Bu?, which we know from
class; (ii) for the dug/d¢ and dug/dl equations, we have included the O(u?) contribution,
even though it occurs at a higher order in the cumulant expansion. The reason for this will
become apparent in part (e).

(d) The fixed point condition is obtained by setting all the flow equations from part (c) to
zero. Show that the following is a fixed point solution:

r'=L"=u"=v"=u,=u3=0

This is the Gaussian fixed point. Show that the eigenvalue exponents at the Gaussian fixed
point are:

yT:2: yL:_27 Yu = €, yv:_2+€a yue;:_2+267 yu8:_4+36
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Thus for all d > 4 (e < 0) the only relevant direction is the thermal direction; all the others
are irrelevant, meaning that a critical surface in the space of (L,u,v,ug,us) flows to the
Gaussian fixed point. For dimensions d just below 4 (small € > 0), the u direction becomes
relevant, and thus for any nonzero u there will be flow away from the Gaussian fixed point,
toward the Wilson-Fisher fixed point described in the next section.

(e) Assume that € is small and positive. Show that there exists another fixed point, with
u* ~ O(e). Find the order in € of the other parameters at the fixed point: r*, L*, v*, ug,
and ug. Besides u*, what other parameters are O(e)?

You can now relax; the problem set is over. Here is the payoff: from your answer in part
(e), it should be clear that as € — 0, the Wilson-Fisher fixed point moves continuously
closer to the Gaussian fixed point, until the two merge at ¢ = 0. The eigenvalue exponents
of the Wilson-Fisher fixed point must also change continuously as ¢ — 0, approaching the
values calculated for the Gaussian fixed point in part (d). Without doing any additional
calculations, we can thus say that the eigenvalues at the Wilson-Fisher fixed point can differ
from the Gaussian eigenvalues by at most O(e). If this is true, then using the answer of part
(d) we can write down the following form for the eigenvalue exponents of the Wilson-Fisher
fixed point:

Yyr = 2+ 0(6)7 yrL = -2+ O(E), Yu = 0(6)7
Yy = -2+ (9(6), Yug = -2+ O<€)7 Yug = —4 + O(E)

Indeed when we explicitly calculated y and ¥, in class, we found yr = 2 — Z_j:?ze and y, = —¢,
which agree with the above form. Thus for dimensions just below 4 only the thermal direction
is relevant; the Wilson-Fisher fixed point now controls the critical surface in (L, u, v, ug, us)
space. We can extend this analysis to all other higher order terms, and we will find the same
answer. An infinite number of parameters are irrelevant at the fixed point, and the critical
behavior is the same for a wide range of possible Hamiltonians (i.e. any Hamiltonian with

¢ > 0 and nonzero u): this is one of the most dramatic examples of universality.



