RG Methods in Statistical Field Theory: Problem Set 6

due: Friday, November 10, 2006

Problem 1

In this problem we investigate the nature of the singularities in the Gaussian model as $T \to T_c^+$ $(r \to 0^+)$. Even though at r = 0 the system exhibits fluctuations at all length scales, we will show that the singularities are caused entirely by long-wavelength fluctuations (small **q** modes).

(a) Consider the *d*-dimensional Gaussian model, written in terms of Fourier-transformed variables $\mathbf{m}(\mathbf{q})$, where \mathbf{m} is the *n*-component order parameter:

$$\mathcal{H} = \int_0^\Lambda \frac{d^d \mathbf{q}}{(2\pi)^d} \frac{1}{2} \left(r + cq^2 + Lq^4 + \cdots \right) |\mathbf{m}(\mathbf{q})|^2 - \mathbf{H} \cdot \mathbf{m}(\mathbf{q} = 0)$$

Here $\mathbf{H} = H\hat{\mathbf{e}}_1$ is a uniform magnetic field pointing along the $\hat{\mathbf{e}}_1$ axis. Using the facts about Gaussian functional integrals discussed earlier in class, find the exact expression for the partition function Z of this system. Show that the free energy per volume f can be written as:

$$f = -\frac{1}{\beta V} \ln Z = \frac{n}{2\beta} \int_0^{\Lambda} \frac{d^d \mathbf{q}}{(2\pi)^d} \ln \left[v_0^{-1} \beta (r + cq^2 + Lq^4 + \cdots) \right] - \frac{H^2}{2r}$$

Hint: Depending on how you calculate Z, you might end up with a factor of $\delta^{(d)}(\mathbf{q} = 0)$ in one of the terms. You can find the value of this factor using the definition: $(2\pi)^d \delta^{(d)}(\mathbf{q}) = \int dx \exp(i\mathbf{q} \cdot \mathbf{x})$. Thus $\delta^{(d)}(0) = V/(2\pi)^d$, where V is the volume of the system.

(b) Let us look at the magnetic susceptibility, $\chi = -\partial^2 f/\partial H^2$ evaluated at H = 0. Show that $\chi \propto r^{-1}$, so it diverges as $r \to 0^+$. Note that this divergence is entirely due to the $\mathbf{H} \cdot \mathbf{m}(\mathbf{q} = 0)$ term in the Hamiltonian \mathcal{H} , where the magnetic field couples to the $\mathbf{q} = 0$ mode (infinite wavelength fluctuation). The singularity does not depend in any way on the cutoff Λ . If we change the cutoff, adding or subtracting high \mathbf{q} modes in the Hamiltonian, the singular behavior of χ is not affected.

(c) Calculate the leading behavior of the specific heat for small r at H = 0, $C \approx -T_c \partial^2 f / \partial r^2$. Show that it can be written as:

$$C \approx A \int_0^\Lambda dq \frac{q^{d-1}}{(r+cq^2+Lq^4+\cdots)^2}$$

where the constant $A = nk_BT_c^2S_d/2(2\pi)^d$ and S_d is the area of a *d*-dimensional unit sphere. Argue that for $d > d_c$, there is no divergence in C as $r \to 0^+$. Find d_c .

(d) Now consider the case $d < d_c$. Let us break up the integral into two parts, one going from q = 0 to Λ/b , and the other from $q = \Lambda/b$ to Λ :

$$C \approx A \int_0^{\Lambda/b} dq \frac{q^{d-1}}{(r+cq^2+Lq^4+\cdots)^2} + A \int_{\Lambda/b}^{\Lambda} dq \frac{q^{d-1}}{(r+cq^2+Lq^4+\cdots)^2} \equiv C_{<} + C_{>}$$

Argue that for any b > 1, the contribution $C_>$ must be finite in the limit $r \to 0^+$.

(e) The result of part (d) means that the divergence in C is entirely contained in the $C_{<}$ term. Show that as $r \to 0^+$, $C_{<} \approx Br^{-\alpha}$, where B is a constant independent of Λ and b. Find the exponent α . *Hint:* Non-dimensionalize the $C_{<}$ integral using the variable $x = (c/r)^{1/2}q$.

Note that parts (d) and (e) are true for any b > 1, even in the limit $b \gg \Lambda$, where $C_{<}$ corresponds to an integral over a tiny ball of radius Λ/b surrounding $\mathbf{q} = 0$ in the Brillouin zone. Thus the small \mathbf{q} modes determine the divergence in the specific heat. The cutoff Λ , or any other details of the high \mathbf{q} behavior, have no affect on the singularity.

Problem 2

Up to now we have only considered systems with short-range interactions. In magnetic lattice models we had a nearest-neighbor spin-spin interaction, and in the continuum limit this gave us derivative terms like $(\nabla \mathbf{m}(\mathbf{x}))^2$ in the Landau-Ginzburg Hamiltonian. But real physical systems can also have long-range effects, decaying slowly with distance, like magnetic dipole-dipole interactions. How would such interactions affect the critical behavior? In this problem we look at this question in the context of the Gaussian model.

(a) Let us add a long-range interaction \mathcal{H}_{LD} to the Hamiltonian of the *d*-dimensional Gaussian model, where:

$$\mathcal{H}_{LD} = \int d^d \mathbf{x} \int d^d \mathbf{y} J(|\mathbf{x} - \mathbf{y}|) \mathbf{m}(\mathbf{x}) \cdot \mathbf{m}(\mathbf{y})$$

and $J(r) = A/r^{d+\sigma}$ for some constants $A, \sigma > 0$. Show that in terms of Fourier modes, this interaction can be written as:

$$\mathcal{H}_{LD} = K_{\sigma} \int \frac{d^d \mathbf{q}}{(2\pi)^d} q^{\sigma} \mathbf{m}(\mathbf{q}) \cdot \mathbf{m}(-\mathbf{q})$$

where K_{σ} is a constant which depends on the value of σ . *Hint:* It is useful to change variables to $\mathbf{R} = (\mathbf{x} + \mathbf{y})/2$ and $\mathbf{r} = (\mathbf{x} - \mathbf{y})/2$. There will be an integral over \mathbf{r} from which the \mathbf{q} dependence can be factored out using the substitution $\mathbf{s} = q\mathbf{r}$. The constant K_{σ} involves an integral (independent of \mathbf{q}) which you do *not* need to evaluate.

(b) Thus the Gaussian model with the long-range interaction has the form:

$$\mathcal{H} = \int_0^\Lambda \frac{d^d \mathbf{q}}{(2\pi)^d} \frac{1}{2} \left(r + K_\sigma q^\sigma + cq^2 + Lq^4 + \cdots \right) |\mathbf{m}(\mathbf{q})|^2 - \mathbf{H} \cdot \mathbf{m}(\mathbf{q} = 0)$$

Construct a renormalization-group transformation for this system, and find equations for r', K'_{σ} , c', L',.... Leave the equations in terms of the parameter ζ , where ζ is the constant of proportionality in the definition $\mathbf{m}'(\mathbf{q}') = \zeta^{-1}\mathbf{m}_{<}(\mathbf{q})$. (Do not choose a particular value for ζ just yet.)

(c) Consider the case where $\sigma > 2$, c > 0, and K_{σ}, L, \ldots have arbitrary values. Choose an appropriate ζ , and show that the long-range interaction is irrelevant at the fixed point: it does not affect the critical behavior of the system.

(d) Consider the case where $\sigma < 2$, $K_{\sigma} > 0$, and c, L, \ldots have arbitrary values. Choose an appropriate ζ , and calculate the critical exponents γ , ν , and η . You should find that some of the exponents in this case depend on σ . Thus if the decay of the long-range interaction is sufficiently slow ($\sigma < 2$), it affects the critical behavior of the system.