
RG Methods in Statistical Field Theory:
Problem Set 5 Solution

In lecture we showed that the scaling behavior of physical quantities near a critical point
arises naturally from looking at the coarse-grained description of the system. In this problem
set we will see that similar renormalization-group ideas can be used to derive some of the
fundamental scaling characteristics of polymers. The beauty of this approach is that one can
find a few basic results just from general arguments, without needing to know the details
of the renormalization-group transformation. (Happily for us, this means no long, tedious
calculations are necessary.)

Part I: The Ideal Chain
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(a) Consider the simplest possible model for a polymer in d dimensions: a chain of N + 1
molecules (“monomers”) connected by N bonds of fixed length a, where the direction of each
bond is completely random. We begin by looking at an “ideal chain”, where there are no
interactions between the monomers, so that every configuration of the chain has the same
energy. Let Ri be the position of the ith atom, and ai = Ri+1 − Ri be the bond vector
between ith and the (i + 1)th atom. Each ai vector has length a, and the randomness of
the bond directions means that 〈ai〉 = 0 and 〈ai · aj〉 = 0, for i 6= j, where 〈 〉 denotes a
thermodynamic average over all possible chain configurations. One way to characterize the
total size of the polymer coil is by the end-to-end vector R, defined as:

R ≡ RN+1 −R1 =
N∑

i=1

ai

Since 〈ai〉 = 0, clearly 〈R〉 = 0, but 〈R2〉 = 〈R ·R〉 has a nonzero value. Show that:

〈R2〉 = Na2

Thus the root-mean-squared end-to-end distance R̄ ≡ 〈R2〉1/2 scales like N1/2 for the ideal
chain.

Answer:

〈R2〉 =

〈
N∑

i,j=1

ai · aj

〉
=

N∑
i=1

〈ai · ai〉+
N∑

i6=j

〈ai · aj〉 = Na2
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where we have used the fact that

〈ai · aj〉 =

{
0 i 6= j

a2 i = j

(b) We would like to replace the ideal chain with a coarse-grained model that has the same
global properties. We can divide up the original chain into N/b subunits, with each subunit
containing b consecutive monomers. If we assign a position R′

n to the nth subunit (for
example, the center of mass of the b monomers in the subunit), then we can consider a new
coarse-grained (“renormalized”) polymer chain defined by the series of positions R′

n and the
vectors a′n = R′

n+1 −R′
n. Of course the a′n will now have different lengths depending on the

original chain configuration, but as a first approximation we can fix the length |a′n| = a′ for
all n, where a′ represents some average distance between the subunits. We would like the
size R̄′ of the new chain to equal R̄ of the original. For this to be true, show that a′ must
satisfy:

a′ = b1/2a

Answer: We would like R̄′ = N ′1/2a′ to equal R̄ = N1/2a. Since N ′ = N/b, this implies
a′ = b1/2a.

Part II: The Interacting Chain

Note that in the ideal chain there is nothing preventing two monomers from occupying the
same position. In real polymers, there are repulsive interactions: if two monomers come too
close to each other, the energy of the configuration becomes large. We can represent this
interaction by some short-ranged function, so that the energy of the system is U = 1

2

∑
i,j Uij,

where the potential between the ith and jth monomer is written as Uij = kBTF (Ri −Rj).
Here we have factored out an energy kBT , so that the function F is dimensionless. We assume
that F is large only when Ri and Rj are close to each other, and nearly zero otherwise. More
complicated three-body or higher-order interactions are ignored. In the limit of very short-
ranged interactions, we can write F (Ri − Rj) ≈ vδ(d)(Ri − Rj), where v is a constant
with dimensions of volume (note that the delta function has dimensions of volume−1, since∫

ddx δ(d)(x) = 1). The constant v, which measures the strength of the interaction and can
vary with temperature, is known as the excluded volume. When v = 0, we have an ideal
chain.

The excluded volume interaction has a dramatic effect on the system. If v > 0 the polymer
will “swell up”: the size of the coil will be greater than for an equivalent ideal chain, because
different parts of the polymer will repel each other. Exact calculations become impossible,
but we can still say something about the system from renormalization-group arguments.
Consider a coarse-grained model of the interacting polymer, made up of N/b subunits and
described by constants a′ and v′. The parameter a′ must take into account all the interactions
between monomers inside one subunit, and v′ must account for interactions between any two
subunits. Because of monomer-monomer repulsion, the distance a′ should be larger than the
ideal chain result of part (b). We can write it as:

a′ = b1/2a(1 + Hb(u))
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where Hb(u) is a positive, dimensionless function that depends on b and the dimensionless
interaction parameter u ≡ v/ad. (Since a and v are the only constants in the system, u is
the only dimensionless parameter we can form.) We can write down a similar equation for
v′: if two subunits of the renormalized polymer could completely interpenetrate each other,
then v′ would equal b2v, because there are b2 possible interactions between the b monomers
of one subunit and the b monomers of the other. But because there is repulsion between the
subunits, complete interpenetration does not happen, and the actual v′ is smaller:

v′ = b2v(1− Lb(u))

where Lb(u) is a positive dimensionless function. The exact forms of Hb and Lb could be
found from a detailed renormalization group transformation. For our purposes, we only need
to assume that they exist and are well-behaved. The transformation preserves the size of
the coil, so that R̄′ = R̄.

(c) Write down a renormalization-group equation for u′ = v′/(a′)d. Now we can course-grain
the renormalized system, repeating the transformation, giving us a new polymer with N/b2

subunits and an interaction parameter u′′. After n course-grainings, we have some parameter
u(n) describing the interactions for a polymer with N/bn subunits. Show that there exists a
critical dimension dc such that for d > dc, the value u(n) → 0 as n →∞. Find dc.

Answer: Putting together the RG equations for a and v we find:

u′ =
v′

(a′)d
=

b2v(1− Lb(u))

bd/2ad(1 + Hb(u))d
= b2−d/2u

(1− Lb(u))

(1 + Hb(u))d

Since 1 − Lb(u) < 1 and 1 + Hb(u) > 1, the factor (1−Lb(u))
(1+Hb(u))d < 1. When 2 − d/2 < 0, or

d > 4, all the factors multiplying u on the right-hand side will be smaller than 1. Iterating
the RG equation, we can determine that u(n) < bn(2−d/2)u. Thus u(n) → 0 as n → ∞ for
dimensions d > dc = 4.

(d) Part (c) shows that u∗ = 0 is a fixed point of the renormalization-group transformation
for d > dc. What does this mean for the size of the original system R̄? For a polymer of N
bonds of length a, we expect R̄ to have the form:

R̄ = aD(N, u)

where D is some dimensionless function. Using the fact that R̄ is preserved by the RG
transformation, show that:

R̄ ∝ N1/2 for d > dc

Thus the system behaves similar to an ideal chain.

Answer: The condition R̄ = R̄′ implies that:

R̄ = aD(N, u) = a′D(N ′, u′) = · · · = a(n)D(N (n), u(n))

From the RG equation for a we know that:

a(n) = b1/2a(n−1)(1 + Hb(u
(n−1))) = · · · = bn/2a

n−1∏
i=0

(1 + Hb(u
(i)))
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Taking the limit of large n we know that u(n) → u∗ = 0, so we can simplify the product
above as follows: choose a large integer n0 such that for n ≥ n0 we can make the replacement
u(n) ≈ u∗. (The exact value of n0 is unimportant, so long as we keep it fixed in the derivation
below.) Then a(n) in the limit n →∞ can be written as:

a(n) = bn/2a

n0−1∏
i=0

(1 + Hb(u
(i)))

n−1∏
i=n0

(1 + Hb(u
(i)))

≈ bn/2a(1 + Hb(u
∗))n−n0

n0−1∏
i=0

(1 + Hb(u
(i)))

= Cbn/2a(1 + Hb(u
∗))n−n0

where the constant C ≡
∏n0−1

i=0 (1 + Hb(u
(i))). The value of Hb(u

∗) at u∗ = 0 must be zero,
since the RG equation for a in the noninteracting limit u = 0 must give back the ideal chain
result of part (b): a′ = b1/2a(1 + Hb(0)) = b1/2a. Thus a(n) ≈ Cbn/2a. Plugging this along
with N (n) = b−nN into the equation for R̄ above we get:

R̄ = a(n)D(N (n), u(n)) ≈ Cbn/2D(b−nN, u∗)

Choose n large enough so that bn ≈ N . Then:

R̄ ≈ CN1/2D(1, u∗)

Thus we have the result that R̄ ∝ N1/2 for d > dc.

(e) For d < dc, u(n) will tend to a fixed point u∗, but u∗ does not have to be zero. In
fact, we expect that after n coarse-grainings, with n large, when each subunit corresponds
a large polymer coil of bn monomers in the original system, the subunits will behave like
impenetrable spheres: the excluded volume will be proportional to the size of the coil itself,
v(n) ∼ (a(n))d. Thus u(n) = v(n)/(a(n))d goes to some nonzero constant u∗ as n → ∞. Show
that in this case:

R̄ ∝ N ν for d < dc

and find an equation for ν in terms of u∗, b, and the functions Hb, Lb. The Flory exponent
ν has a universal value for all real polymers in a certain dimension. For d = 3, ν ≈ 3/5. As
expected, ν > 1/2 because the size of the polymer should grow faster with N compared to
an ideal chain, due to the repulsive interactions.

Answer: We can proceed exactly like in the answer to part (d). The only difference will
be that since u∗ 6= 0 for d < dc, Hb(u

∗) 6= 0 and the factor (1 + Hb(u
∗))n−n0 6= 1. Thus the

result for R̄ is:

R̄ ≈ Cbn/2(1 + Hb(u
∗))n−n0D(b−nN, u∗)

= C̃bnνD(b−nN, u∗)

where:

C̃ ≡ C(1 + Hb(u
∗))−n0 , ν ≡ 1

2
+

ln(1 + Hb(u
∗))

ln b
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Here we have used the fact that we can write a quantity x as x = by where y = ln x/ ln b. If
we choose n large enough that bn ≈ N we have:

R̄ ≈ C̃N νD(1, u∗)

so R̄ ∝ N ν . Note that for d ≤ dc, when u∗ = 0 and Hb(u
∗) = 0, the equation for ν gives the

answer ν = 1/2 you found in part (d).

Part III: The Polyelectrolyte Chain

(f) Finally, let us consider a chain with long-range interactions: one where each monomer
has a charge e, and the monomers interact through Coulomb repulsion. Since the Coulomb
force decays slowly with distance, the repulsive effects can be quite dramatic (as we will
see later, in certain cases the chain can end up fully stretched into a rigid line, with each
monomer trying to get as far from the others as possible). The potential between the ith
and jth monomer now has the form:

Uij(|Ri −Rj|) = kd
e2

|Ri −Rj|d−2

where kd is some constant that depends on dimension d. For this system, if we want a
dimensionless parameter u measuring the strength of the interaction, let us take the ratio of
the Coulomb repulsion between neighboring monomers and the energy kBT :

u ≡ kde
2

kBTad−2

Assume that a′ of the renormalized system has an RG equation of the same form as in Part
II above, involving an unknown positive function Hb(u). The equation for u′ turns out to
be simpler, since the charge e′ of a subunit with b monomers is exactly e′ = be. Find an
equation for u′ in terms of the physical parameters and Hb(u).

Answer:

u′ =
kd(e

′)2

kBT (a′)d−2
=

kdb
2e2

kBTb(d−2)/2ad−2(1 + Hb(u))d−2
= b3−d/2u(1 + Hb(u))2−d

(g) Show that there are three cases for the RG behavior:

d > 6 : u(n) → 0 as n →∞. By the same reasoning as in part (d), this means that R̄ ∝ N1/2.

4 < d < 6 : u(n) → u∗ as n →∞, where u∗ is a nonzero constant. Prove that the size of the
polymer behaves like R̄ ∝ N ν , where ν is given by the simple equation:

ν =
2

d− 2

d < 4 : u(n) →∞ as n →∞. Show that this means the polymer is maximally stretched out
into a rigid line.
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Answer: From the RG equation of part (f) we see that for d > 6 we have b3−d/2 < 1 and
(1 + Hb(u))2−d < 1, so u(n) → 0 as n → ∞. For d < 6 the factor b3−d/2 > 1, so we need
to understand the behavior of the other factor (1 + Hb(u))2−d in order to determine the RG
flow of u. Up to this point in the problem set, the only facts about the function Hb(u)
we have used is that it is positive and Hb(0) = 0. Is there anything else we can say? We
know that in the limit u →∞ the Coulomb repulsion becomes infinitely strong: physically,
we expect the charged monomers to get as far away from each other as possible, stretching
the polymer into a rigid line. But when the polymer is a straight line, R̄ = Na, and the
renormalization of the segment length a is trivial: a′ = ba for a coarse-grained system with
N ′ = N/b segments. Since a′ = b1/2a(1 + Hb(u)), this implies that when u = ∞ we have:
1 + Hb(∞) = b1/2.

Now we are ready to make an RG argument. Let us be in a dimension d < 6. If our original
system has a very small u, we can say that 1 + Hb(u) ≈ 1, so

u′ ≈ b3−d/2u

Clearly u will flow to a larger value. If our original system has a very large u, we can say
that 1 + Hb(u) ≈ b1/2, so

u′ ≈ b3−d/2b(2−d)/2u = b4−du

If d < 4 we see that in this case also u will flow to a larger value. From these two limiting
cases we can say that the fixed point u∗ = ∞ when d < 4.

On the other hand when 4 < d < 6, we find that a large u will flow to a smaller value, and
a small u will flow to a larger value. Hence the fixed point must be some u∗ 6= 0,∞. The
fixed point equation is:

u∗ = b3−d/2u∗(1 + Hb(u
∗))2−d

which implies that (1 + Hb(u
∗)) = b(d/2−3)/(2−d). Doing the same analysis as in part (e), we

get exactly the same expression for ν, but now we can plug in the value of (1 + Hb(u
∗)):

ν =
1

2
+

ln(1 + Hb(u
∗))

ln b
=

1

2
+

d/2− 3

2− d
=

2

d− 2
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