
RG Methods in Statistical Field Theory:
Problem Set 3

due: Friday, October 13, 2006

In class we discussed the spin wave fluctuations which occur when a continuous symmetry is
broken. In this problem set, we will see that such fluctuations can actually destroy the ordered
state completely under certain conditions. We will work in d dimensions, and concentrate
on the case of an order parameter with n = 2 components (known as the XY model).

Let us start at the same place we did in class: by taking the mean-field solution and adding
small fluctuations to it. Assume the mean-field solution has the form m(x) = mê1, where m
is independent of x, and ê1 is a unit vector along the direction in which the system orders
at low temperature. Instead of using the φ‖ and φ⊥ fluctuations we introduced in class, we
choose to write the fluctuations in a different form, more convenient when the m(x) vector
has only n = 2 components:

m(x) = m cos θ(x) ê1 + m sin θ(x) ê2

Here θ(x) is an angle that can vary with position. When there are no fluctuations, θ(x) = 0,
and we get the mean-field solution with all the m(x) vectors pointing in the same direction.
Let us now see what happens when we allow θ(x) to be nonzero.

(a) First, let us calculate the energy of the fluctuations. Plug the above form for m(x) into
the Hamiltonian functional:

H[m(x)] =

∫
ddx

[r

2
m2(x) + um4(x) +

c

2
(∇m(x))2

]
Show that H can be written as:

H = H0 +
K

2

∫
ddx (∇θ(x))2

where H0 = V ( r
2
m2 + um4) is just the mean-field energy, and K = cm2.

(b) Now imagine the system is a box of volume V = Ld, and write θ(x) as a Fourier
expansion:

θ(x) =
1

V

∑
q

eiq·xθ(q) , θ(q) =

∫
ddx e−iq·xθ(x)

where q = 2π
L

(n1ê1 + n2ê2 + . . . ndêd) and the ni are integers. The functions eiq·x satisfy the
orthogonality condition: ∫

ddx ei(q−q′)·x = V δq,q′

Show that the Hamiltonian can be written as:

H = H0 +
K

2V

∑
q

q2θ(q)θ(−q)

(c) Use the fact that θ(x) is real to show that θ(−q) = θ∗(q). This means that θ(q)θ(−q) =
θ2

R(q) + θ2
I (q), where θR(q) and θI(q) are the real and imaginary parts of θ(q). Show that
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the Hamiltonian can be written as:

H = H0 +
K

V

∑
q>0

q2
[
θ2

R(q) + θ2
I (q)

]
Here the sum over q > 0 is shorthand notation that means we are summing over only half
of the possible values of q. (For example, we restrict one of the integers ni to be positive.)

(d) The partition function involves integrating over all possible functions m(x). In terms of
the Fourier-transformed Hamiltonian, this means integrating over all possible values of the
Fourier components θR(q) and θI(q):

Z =

∫ ∞

−∞

∏
q>0

dθR(q)dθI(q) e−βH

We are interested in calculating the average of m(x) along the ê1 direction, which we can
write as follows:

〈m1(x)〉 = m〈cos θ(x)〉 = m<〈eiθ(x)〉

where <z denotes the real part of a complex number z. Thus to find 〈m1(x)〉 we have to
find the average:

〈eiθ(x)〉 =
1

Z

∫ ∞

−∞

∏
q>0

dθR(q)dθI(q) eiθ(x)e−βH

Replace θ(x) by its Fourier expansion: it turns out that the integral above can be rewritten
as a product over ordinary Gaussian integrals, which can be solved using the basic rule we
showed in class: ∫ ∞

−∞
dφ e−

K
2

φ2+hφ =

√
2π

K
eh2/2K

where K and h can be complex, with <K > 0. Show that:

〈m1(x)〉 = me−W where W =
1

βKV

∑
q>0

1

q2

(e) Mean-field theory tells us that the constant m will be nonzero below Tc. If W < ∞,
then the result of part (d) shows us that we still have an ordered phase at low temperatures,
though with an average magnetization 〈m1(x)〉 = me−W that is smaller than the mean-field
solution because of the effects of fluctuations. However, if W = ∞, we get the interesting
result that 〈m1(x)〉 = 0: the ordered phase has been destroyed by the fluctuations! Calculate
W , and show that there is an ordered phase for dimensions d > 2. For d ≤ 2 show that there
is no order except at T = 0.

Hint: So how do we calculate the value of W? In the limit of large volume we can replace
the sum over q by an integral:

W =
1

βKV

∑
q>0

1

q2
→ 1

2βK

∫
ddq

(2π)d

1

q2

where we add the factor of 1/2 because we make the integral go over all of q-space, not just
one-half. We have to be careful here: when we expanded θ(x) in terms of Fourier components,
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we did not specify any restrictions on q. However it is unphysical to include fluctuations
with such large |q| that the wavelengths λ = 2π/|q| are smaller than the microscopic lattice
spacing of our system `. Thus our integral should not really be over all q-space, but rather
within some cutoff |q| < Λ, where Λ ∝ 1/`. We are integrating inside a d-dimensional sphere
of radius Λ, where Λ is large but not infinite. With this restriction in place, we can now
calculate the integral. For d > 1 the infinitesimal d-dimensional volume ddq can be written
in radial coordinates as ddq = qd−1dq dΩd, where dΩd is a d-dimensional solid angle. The
angular integration can be done using the fact that:∫

dΩd = Sd where Sd =
2πd/2

(d/2− 1)!

Here Sd is the area of a d-dimensional unit sphere.
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