
RG Methods in Statistical Field Theory:
Problem Set 2 Solution

The ordered phase for the magnetic system we examined in class had a spatially uniform order
parameter. Here we will look at a more general situation, with the possibility of a modulated
phase, where the order parameter varies periodically in space. For simplicity, we consider an
n = 1, d = 1 system along a line of length L, with a Hamiltonian functional given by:

H[m(x)] =

∫ L

0

dx

[
r

2
m2(x) + um4(x) +

c

2

(
∂m

∂x

)2

+
D

2

(
∂2m

∂x2

)2
]

Here r varies with temperature, and u, D, c are constants. We restrict u, D > 0, but we allow
c to take on any value. When both c > 0 and D > 0, any spatial fluctuations in m(x) cost
energy, so we expect all phases to be uniform. On the other hand when c < 0 and D > 0, there
is the possibility that the system can lower its free energy by going to a nonuniform phase. We
will investigate this possibility by constructing the mean-field phase diagram in terms of r and
c. We do this in several steps:

(a) Because we are dealing with the possibility of spatially fluctuating m(x), it is reasonable to
rewrite the Hamiltonian in terms of Fourier modes. We define the Fourier transforms:

m(x) =
1

L

∞∑
n=−∞

mne
iqnx , mn =

∫ L

0

dx e−iqnxm(x)

where n is an integer and qn = 2πn/L. The orthogonality and completeness properties for the
Fourier modes eiqnx are:

∫ L

0

dx ei(qn−qn′ )x = Lδn,n′ ,

∞∑
n=−∞

e−iqnx = Lδ(x)

Plug in the expansion for m(x) into the Hamiltonian H and show that we can write:

H =
1

2L

∑
n

Knmnm−n +
u

L3

∑

n,n′,n′′
mnmn′mn′′m−n−n′−n′′

where Kn = r + cq2
n + Dq4

n.

Answer: Plugging the expansion term by term into the Hamiltonian:

∫ L

0

dx
r

2
m2(x) =

∫ L

0

dx
r

2L2

∑

n,n′
mnmn′e

i(qn+qn′ )x

=
r

2L2

∑

n,n′
mnmn′Lδn,−n′ =

r

2L

∑
n

mnm−n

∫ L

0

dx
c

2

(
∂m

∂x

)2

=

∫ L

0

dx
c

2L2

∑

n,n′
mnmn′(−qnqn′)e

i(qn+qn′ )x

=
c

2L

∑
n

(−qnq−n)mnm−n =
c

2L

∑
n

q2
nmnm−n
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∫ L

0

dx
D

2

(
∂2m

∂x2

)2

=

∫ L

0

dx
D

2L2

∑

n,n′
mnmn′q

2
nq

2
n′e

i(qn+qn′ )x

=
D

2L

∑
n

q2
nq

2
−nmnm−n =

D

2L

∑
n

q4
nmnm−n

∫ L

0

dx u m4(x) =

∫ L

0

dx
u

L4

∑

n,n′,n′′,n′′′
mnmn′mn′′mn′′′e

i(qn+qn′+qn′′+qn′′′ )x

=
u

L4

∑

n,n′,n′′,n′′′
mnmn′mn′′mn′′′Lδn+n′+n′′,−n′′′

=
u

L3

∑

n,n′,n′′
mnmn′mn′′m−n−n′−n′′

Putting all this together, we get the result for the Hamiltonian quoted above:

H =
1

2L

∑
n

Knmnm−n +
u

L3

∑

n,n′,n′′
mnmn′mn′′m−n−n′−n′′

where Kn = r + cq2
n + Dq4

n. Note that K−n = Kn.

(b) We solve this system using a mean-field approximation, writing the partition function Z ≈
exp(−βH[msad(x)]), where msad(x) minimizes H. In terms of Fourier modes, the saddle point
condition can be expressed as the series of coupled equations:

∂H
∂mn

= 0 for all n

Show that each of the following cases is a possible solution of the saddle point equations. In
each case, also find the range of r and c for which the solution is possible. (Do not worry about
the free energy of the solutions yet; we will look at this in the next part.)

Case I: mn = 0 for all n. This case corresponds to an order parameter m(x) = 0 at every point.

Case II: mn = La0δn,0 where a0 6= 0 is a real constant. This case corresponds to a uniform order
parameter m(x) = a0.

Case III: mn = Lak(δn,k + δn,−k) for some positive integer k 6= 0 and real constant ak 6= 0. This
case corresponds to a spatially varying order parameter m(x) = 2ak cos(2πkx/L).

Answer: The saddle point equations have two different forms, one for n = 0, and one for n 6= 0.
The first form is:

0 =
∂H
∂m0

=
K0

L
m0 +

4u

L3

∑

n′,n′′,n′′′ 6=0
n′+n′′+n′′′=0

mn′mn′′mn′′′ +
12u

L3

∑

n′ 6=0

mn′m−n′m0 +
4u

L3
m3

0

We derived this answer by considering every possible way in which m0 could appear in H. In
particular, the u sum inH involves products like mnmn′mn′′mn′′′ where n+n′+n′′+n′′′ = 0. The
second term above comes from the derivative of the u sum where we have one m0 component,
and three components not equal to m0. The third term comes from the derivative of the u sum
where we have two m0 components, and two components not equal to m0. The last term comes
from the derivative of the u sum where all four components are m0.
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Using a similar analysis, we can also derive the second form of the saddle point equations, when
n 6= 0:

0 =
∂H
∂mn

=
Kn

L
m−n +

4u

L3

∑

n′,n′′,n′′′ 6=n
n′+n′′+n′′′=−n

mn′mn′′mn′′′ +
12u

L3

∑

n′,n′′ 6=n
n′+n′′=−2n

mn′mn′′mn +
12u

L3
m−3nm

2
n

Now let us consider each case in turn, and verify that the saddle point equations are satisfied:

Case I: When mn = 0 for all n, all the saddle point equations are trivially satisfied. There are
no restrictions on r and c.

Case II: Here mn = La0δn,0, where a0 6= 0 is a real constant. The n 6= 0 saddle point equations
are satisfied, since each term involves at least one mn′ where n′ 6= 0, and these mn′ are all zero.
The n = 0 saddle point equation becomes:

0 = K0a0 + 4ua3
0

This is satisfied when a0 =
√
−K0/4u =

√
−r/4u. Thus we need to have r < 0 for this to be a

possible solution, and c can be anything.

Case III: Here mn = Lak(δn,k + δn,−k) for some positive integer k 6= 0 and real constant ak 6= 0.
The n = 0 saddle point equation is satisfied, since each term involves at least one mn′ where
n′ 6= ±k. The saddle point equations for n 6= ±k are also satisfied for the same reason. This
leaves us with the saddle point equations for n = k and n = −k, both of which give the same
condition:

0 = Kkak + 12ua3
k

This is satisfied when ak =
√
−Kk/12u =

√
−(r + cq2

k + Dq4
k)/12u. Thus we need to have

r < −cq2
k −Dq4

k for this to be a possible solution.

c) We would now like to draw a phase diagram in terms of r and c, centered at the point r = 0,
c = 0, and including regions of positive and negative r, and positive and negative c. For any
given r and c, the phase at that point is determined by which of the three solutions in part
(b) has the smallest free energy A = −kBT ln Z ≈ H. Case I corresponds to the paramagnetic
phase, Case II to the ferromagnetic phase, and Case III to the modulated phase. Note that in
Case III, for a given value of c, there will be a single value of k which gives the minimum free
energy. You should find this k in terms of c and D, which tells you the wavevector of the order
parameter in the modulated phase. When drawing the phase diagram, you should get exact
equations for all transition curves in the diagram, and identify which transitions are first-order
(discontinuous change of order parameter), and which transitions are second-order (continuous
change of order parameter).

Answer: We start by plugging the three possible solutions into the Hamiltonian, to calculate
their free energies. In the mean-field approximation A ≈ H evaluated at the saddle point
solution. For case I, the free energy is:

AI = 0

For case II, the free energy is:

AII =
K0L

2
a2

0 + uLa4
0 = −r2L

8u
+

r2L

16u
= −r2L

16u
where r < 0
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For case III, the free energy is:

AIII = KkLa2
k + 6uLa4

k = −(r + cq2
k + Dq4

k)
2L

12u
+

(r + cq2
k + Dq4

k)
2L

24u

= −(r + cq2
k + Dq4

k)
2L

24u
where r < −cq2

k −Dq4
k

The phase diagram can be divided into two regions, one for c ≥ 0, and the other for c < 0:

c ≥ 0 region: When r > 0 only case I is an allowed solution, so we get the paramagnetic phase.
When r < 0 case I and II are allowed solutions, and if r is sufficiently negative, r < −cq2

k −Dq4
k

for some k 6= 0, then case III is also a solution. Comparing the free energies, we find AII

is the lowest, so we get the ferromagnetic phase. The boundary between the paramagnetic
and ferromagnetic phases is the line r = 0. As we decrease r below r = 0 the magnetization
a0 =

√
−r/4u increases continuously from zero, so this phase transition is second-order.

c < 0 region: We note that for a given r, the only values of k which are allowed solutions in case
III have to satisfy −cq2

k −Dq4
k > r. Of these possible k, the free energy AIII has a minimum at

kmin = L
2π

√
−c
2D

, where

AIII(kmin) = −(r − c2/4D)2L

24u

For r > 0, case II is not a possible solution, so we only have to compare cases I and III. Case III
only becomes possible for r < c2/4D, and in this region AIII(kmin) is smaller than AI = 0, so the
line r = c2/4D represents the phase transition between the paramagnetic and modulated phases.
Since AIII below this line is always smallest for kmin, the magnetization of the modulated phase
has the form: m(x) = 2akmin

cos(2πkminx/L). The amplitude

2akmin
= 2

√
−(r + cq2

kmin
+ Dq4

kmin
)

12u
= 2

√
−(r − c2/4D)

12u

is zero on the line r = c2/4D, and increases continuously as we decrease r below the line, so this
phase transition is second-order.

For r < 0, all three cases are possible solutions, but AII and AIII(kmin) are both smaller than
AI = 0, so the competition is between the modulated and ferromagnetic phases. The phase
transition between these two phases is on the curve AII = AIII(kmin), which can be written as
follows:

−r2L

16u
= −(r − c2/4D)2L

24u
⇒ r = − c2

4D
(2 +

√
6)

For r above this curve we have the modulated phase, for r below this curve we have the ferro-
magnetic phase. On the curve the magnetization of the ferromagnetic phase is:

a0 =

√
−r

4u
=

√
c2(2 +

√
6)

16uD

On the curve the amplitude of the magnetization in the modulated phase, 2akmin
, is given by:

2akmin
= 2

√
−(r − c2/4D)

12u
=

√
c2(3 +

√
6)

12uD
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Since there is a discontinuity in the magnetization crossing the phase boundary, the transition
is first-order.

Below we plot the phase diagram for D = 1. The blue lines are second-order transitions, the red
one first-order. The point at which the three transition lines meet is known as a Lifshitz point.

I: Paramagnetic

III: Modulated

II: Ferromagnetic

r = c2/4D

r = −c2(2 +
√

6)/4D

r = 0

-0.4 -0.2 0.0 0.2 0.4
c

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

r

5


