
RG Methods in Statistical Field Theory:
Problem Set 10 Solution

In this problem set we will use the field theoretical methods developed in class for quantum
systems to derive one the most beautiful results in physics: the BCS mean-field solution
for superconductivity (in its lattice version). Before we turn to the complexities of the full
system, we start with the simple case of non-interacting electrons.

Part I: Non-interacting electrons on a lattice

Consider a d-dimensional hypercubic lattice with N sites at positions xi and lattice spacing
`. Each site can be empty, singly occupied by a spin-up or spin-down electron, or doubly
occupied by two electrons of opposite spin. The operators c†iσ, ciσ create/destroy an electron
with spin σ at site i, where σ =↑ or ↓. They satisfy anticommuation relations:

{ciσ, c†jσ′} = δijδσσ′ , {ciσ, cjσ′} = {c†iσ, c
†
jσ′} = 0

The Hamiltonian we will examine contains only a single physical interaction: the electrons
can tunnel to nearest-neighbor sites. It is given by:

H = −t
∑
〈ij〉

∑
σ

(c†iσcjσ + c†jσciσ)− µ
∑

i

∑
σ

niσ

where the operator niσ = c†iσciσ counts the number of electrons with spin σ at site i. The
total particle number operator (which we will label Np to distinguish it from the number of
sites N) is then: Np =

∑
i

∑
σ niσ.

(a) To solve this system, we can transform to the momentum representation, where we have
a set of operators c†kσ, ckσ that create/destroy an electron of spin σ with momentum k,
where k is one of the N sites in the Brillouin zone of the lattice. These operators are defined
through the Fourier transforms of c†iσ, ciσ:

ckσ =
1√
N

∑
i

e−ik·xiciσ, c†kσ =
1√
N

∑
i

eik·xic†iσ

The inverse transforms are:

ciσ =
1√
N

∑
k∈BZ

eik·xickσ, c†iσ =
1√
N

∑
k∈BZ

e−ik·xic†kσ

Show that the operators c†kσ, ckσ satisfy the anticommutation relations:

{ckσ, c
†
k′σ′} = δk,k′δσσ′ , {ckσ, ck′σ′} = {c†kσ, c

†
k′σ′} = 0

Hint: Remember that 1
N

∑
i e

i(k−k′)·xi = δk,k′ .
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Answer:

{ckσ, c
†
k′σ′} =

1

N

∑
i,j

eik′·xj−ik·xi{ciσ, c†jσ′} =
1

N

∑
i,j

eik′·xj−ik·xiδijδσσ′ =
1

N

∑
i

ei(k′−k)·xiδσσ′

= δk,k′δσσ′

{ckσ, ck′σ′} =
1

N

∑
i,j

eik′·xj−ik·xi{ciσ, cjσ′} = 0

{c†kσ, c
†
k′σ′} =

1

N

∑
i,j

eik′·xj−ik·xi{c†iσ, c
†
jσ′} = 0

Thus we can work easily in momentum space: instead of 2N states labeled by site i and
spin σ, we have 2N states labeled by momentum k and spin σ. In particular we can define
a Fock space in the momentum representation: to describe the total state of the system, we
specify whether each of the 2N states labeled by (k, σ) is empty or occupied. In other words
we have an occupation number nkσ = 0, 1 for every (k, σ), and the total state ket can be
written as |{nkσ}〉, where {nkσ} is the set of all occupation numbers.

(b) Show that the Hamiltonian can be written as:

H =
∑
k, σ

ξkc
†
kσckσ where ξk = −2t

d∑
α=1

cos(`k · êα)− µ

Here êα is the unit vector along the αth direction (so k · êα = kα). We can also write ξk
as ξk = Ek − µ, where Ek = −2t

∑d
α=1 cos(`k · êα). Thus ξk is the energy of a state with

momentum k minus the chemical potential µ.

Answer:

H = −t
∑
〈ij〉

∑
σ

(c†iσcjσ + c†jσciσ)− µ
∑

i

∑
σ

niσ

= − t

N

∑
k,k′

∑
〈ij〉,σ

(eik′·xj−ik·xi + e−ik·xj+ik′·xi)c†kσck′σ −
µ

N

∑
k,k′

∑
i,σ

ei(k′−k)·xic†kσck′σ

= − t

N

∑
k,k′

∑
i,σ

d∑
α=1

(eik′·(xi+`êα)−ik·xi + e−ik·(xi+`êα)+ik′·xi)c†kσck′σ − µ
∑
k,σ

c†kσckσ

= − t

N

∑
k,k′

∑
i,σ

d∑
α=1

ei(k′−k)·xi(ei`k′·êα + e−i`k·êα)c†kσck′σ − µ
∑
k,σ

c†kσckσ

= −t
∑
k,σ

d∑
α=1

2 cos(`k · êα)c†kσckσ − µ
∑
k,σ

c†kσckσ =
∑
k, σ

ξkc
†
kσckσ
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(c) Note that the Hamiltonian in part (b) is diagonal in the momentum Fock space:

H|{nkσ}〉 =

(∑
k, σ

ξknkσ

)
|{nkσ}〉

Using standard methods, show that the partition function Z is given by:

Z =
∑

{nkσ=0,1}

〈{nkσ}|e−βH|{nkσ}〉 =
∏
k, σ

(
1 + e−βξk

)
where

∑
{nkσ=0,1} denotes the sum over all possible sets of occupation numbers {nkσ}. Hint:

Remember that
∑

{nkσ=0,1}
∏

k, σ =
∏

k, σ

∑
nkσ=0,1.

Answer:

Z =
∑

{nkσ=0,1}

〈{nkσ}|e−βH|{nkσ}〉 =
∑

{nkσ=0,1}

e−β
P

k, σ ξknkσ =
∑

{nkσ=0,1}

∏
k, σ

e−βξknkσ

=
∏
k, σ

∑
nkσ=0,1

e−βξknkσ =
∏
k, σ

(1 + e−βξk)

(d) Calculate the average total particle number 〈Np〉 = −∂A/∂µ, where A = −(1/β) lnZ is
the free energy. You should find:

〈Np〉 =
∑
k, σ

1

eβξk + 1
≡
∑
k, σ

fF (ξk)

where the function fF (x) is the Fermi distribution. Note that in the limit T → 0 (β →∞),
we have fF (ξk) = 1 if ξk < 0 and fF (ξk) = 0 if ξk > 0. This means that at zero temperature
all the states with momenta k satisfying Ek < µ are occupied, and all those with Ek > µ
are empty. In order words at T = 0 the chemical potential µ equals the Fermi energy EF ,
which is defined as the maximum occupied energy level.

Answer:

A = − 1

β
lnZ = − 1

β

∑
k, σ

ln(1 + e−βξk)

〈Np〉 = −∂A
∂µ

= −
∑
k, σ

e−βξk ∂ξk
∂µ

1 + e−βξk
=
∑
k, σ

e−βξk

1 + e−βξk
=
∑
k, σ

1

eβξk + 1

Conclusion: non-interacting electrons on a lattice behave almost exactly the same as the
ideal Fermi gas you are familiar with from statistical mechanics. At T = 0 all the states
below a certain energy EF are occupied. The states with the smallest momenta have the
lowest energies, and so are occupied first. The only difference is that the kinetic energy of
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a Fermi gas electron is Ek = k2/2m (i.e. p2/2m with p = ~k and ~ set to 1), while on the
lattice the energy Ek = −2t

∑d
α=1 cos(`k · êα).

Part II: Attractive Hubbard Model

Let us add an interaction term to the Hamiltonian: electrons of opposite spin sitting on the
same site i lower their energy by a constant factor g. This attractive interaction between
negatively charged particles may seem a little strange, but it exists in real materials as
a consequence of phonons. Consider the resulting Hamiltonian, known as the attractive
Hubbard model:

H = −t
∑
〈ij〉

∑
σ

(c†iσcjσ + c†jσciσ)− µ
∑

i

∑
σ

niσ − g
∑

i

ni↑ni↓

(e) Before we attack the problem with all our field theoretical tools, let us first see what
this attractive interaction looks like in momentum space. Show that:

−g
∑

i

ni↑ni↓ = − g

N

∑
k1,k2,k3,k4

c†k1↑c
†
k2↓ck3↓ck4↑δk1+k2,k3+k4

= − g

N

∑
k,k′,q

c†k′↑c
†
q−k′↓cq−k↓ck↑

where in the second line we have introduced momenta k = k4, k′ = k1, and q = k1 + k2 =
k3 + k4. Thus the interaction describes scattering in momentum space: a pair of up and
down spin electrons with momenta k and q−k is destroyed, and another pair with momenta
k′ and q− k′ is created. In this process the total momentum q of the pair is conserved.

Answer:

−g
∑

i

ni↑ni↓ = −g
∑

i

c†i↑ci↑c
†
i↓ci↓ = −g

∑
i

c†i↑c
†
i↓ci↓ci↑

= − g

N2

∑
k1,...,k4

∑
i

ei(k3+k4−k1−k2)·xic†k1↑c
†
k2↓ck3↓ck4↑

= − g

N

∑
k1,...,k4

c†k1↑c
†
k2↓ck3↓ck4↑δk1+k2,k3+k4

We would like to write the Hamiltonian as a path integral, in the same way we did it for
the spinless fermion system discussed in class. The details are almost exactly the same,
but we will be working in the momentum representation, where we have 2N sets of cre-
ation/destruction operators c†kσ, ckσ. We associate with each creation operator c†kσ a Grass-
mann number function ψ̄kσ(τ), and with each destruction operator ckσ a Grassmann number
function ψkσ(τ). We use the shorthand notation that ψ(τ) and ψ̄(τ) without indices represent
2N -component Grassmann vectors whose components are ψkσ(τ) and ψ̄kσ(τ) respectively.
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Thus for example the inner product ψ̄(τ) ·ψ(τ) =
∑

k,σ ψ̄kσ(τ)ψkσ(τ). The partition function
is given by:

Z =

∫
eS Dψ̄Dψ where S =

∫ β

0

dτ

(
−ψ̄(τ) · ∂

∂τ
ψ(τ)−H[ψ̄(τ), ψ(τ)]

)
and:

H[ψ̄(τ), ψ(τ)] =
∑
k,σ

ξkψ̄kσ(τ)ψkσ(τ)− g

N

∑
k,k′,q

ψ̄k′↑(τ)ψ̄q−k′↓(τ)ψq−k↓(τ)ψk↑(τ)

The Grassmann functions ψ̄kσ(τ) and ψkσ(τ) over which we are integrating satisfy antiperi-
odic boundary conditions: ψ̄kσ(β) = −ψ̄kσ(0), ψkσ(β) = −ψkσ(0).

Let us separate the action S into quadratic and quartic parts, S = S0 + Sint, where:

S0 =

∫ β

0

dτ
∑
k,σ

ψ̄kσ(τ)

(
− ∂

∂τ
− ξk

)
ψkσ(τ)

Sint =
g

N

∫ β

0

dτ
∑
k,k′,q

ψ̄k′↑(τ)ψ̄q−k′↓(τ)ψq−k↓(τ)ψk↑(τ)

The whole difficulty of the problem resides in the quartic interaction term Sint. If g = 0, we
would have S = S0, and you could do the quadratic Grassmann integrals directly, leading
(with some work) to the same answer found in part (c). How do we deal with the interaction
term?

(f) As a first step, prove the following results for a Gaussian integral over the complex
number z:

Z =

∫
dz∗dz e−az∗z+h1z+h2z∗ ∝ exp

(
h1h2

a

)
〈z〉 =

1

Z

∫
dz∗dz ze−az∗z+h1z+h2z∗ =

h2

a

where a > 0. To show these, write z in terms of its real and imaginary components, z = x+iy.
The integration measure dz∗ dz ∝ dx dy (up to a constant that does not interest us).

Answer:

Z =

∫
dz∗dz e−az∗z+h1z+h2z∗ ∝

∫
dx

∫
dy e−ax2−ay2+(h1+h2)x+i(h1−h2)y

=
π

a
e(h1+h2)2/4ae−(h1−h2)2/4a =

π

a
eh1h2/a

〈z〉 =
1

Z

∂Z

∂h1

=
h2

a
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(g) The result of part (f) naturally generalizes to the following path integral, where we are
integrating over a complex-valued function φ(τ):∫

Dφ∗Dφ e
R

dτ [−aφ∗(τ)φ(τ)+h1(τ)φ(τ)+h2(τ)φ∗(τ)] ∝ exp

(
1

a

∫
dτ h1(τ)h2(τ)

)
This is true because in the path integral each φ(τ), φ∗(τ) for different τ is an independent
variable you are integrating over. Why is this result useful? Define two Grassmann-valued
functions ρ̄q(τ) and ρq(τ) as follows:

ρ̄q(τ) =
∑
k

ψ̄k↑(τ)ψ̄q−k↓(τ)

ρq(τ) =
∑
k

ψq−k↓(τ)ψk↑(τ)

Note that since ρ̄q(τ) and ρq(τ) are made from products of two Grassmann numbers, they
commute with everything and we can treat them in most cases like ordinary numbers. The
quartic interaction part of the action can be written as:

Sint =
g

N

∫ β

0

dτ
∑
q

ρ̄q(τ)ρq(τ)

Now let us introduce a different complex-valued function ∆q(τ) for every q. Using the path
integral result above, show that eSint can be written as a product of path integrals over all
the ∆q(τ):

eSint ∝
∫

exp

(∫ β

0

dτ
∑
q

[
−N
g

∆∗
q(τ)∆q(τ) + ∆q(τ)ρ̄q(τ) + ∆∗

q(τ)ρq(τ)

])
D∆∗D∆

where D∆∗D∆ ≡
∏

qD∆∗
qD∆q. Note that since ρ̄q(0) = ρ̄q(β) and ρq(0) = ρq(β), the

functions ∆q(τ) also satisfy periodic boundary conditions: ∆q(0) = ∆q(β).

Answer:

exp(Sint) = exp

(
g

N

∫ β

0

dτ
∑
q

ρ̄q(τ)ρq(τ)

)
=
∏
q

exp

(
g

N

∫ β

0

dτ ρ̄q(τ)ρq(τ)

)

∝
∏
q

∫
exp

(∫ β

0

dτ

[
−N
g

∆∗
q(τ)∆q(τ) + ∆q(τ)ρ̄q(τ) + ∆∗

q(τ)ρq(τ)

])
D∆∗

qD∆q

=

∫
exp

(∫ β

0

dτ
∑
q

[
−N
g

∆∗
q(τ)∆q(τ) + ∆q(τ)ρ̄q(τ) + ∆∗

q(τ)ρq(τ)

])
D∆∗D∆

We have done something quite remarkable: the quartic interaction eSint has been rewritten
as a path integral involving only quadratic Grassmann terms like ρ̄q(τ) and ρq(τ). This trick
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is known as a Hubbard-Stratonovich transformation, similar to the one used in Problem Set
1. However, it comes at a price: we have introduced new complex fields ∆q(τ), which we
now have to include in the partition function. The full expression for Z looks like:

Z =

∫
eS Dψ̄DψD∆∗D∆

where

S =

∫ β

0

dτ

[∑
k,σ

ψ̄kσ(τ)

(
− ∂

∂τ
− ξk

)
ψkσ(τ)− N

g

∑
q

∆∗
q(τ)∆q(τ)

+
∑
q,k

∆q(τ)ψ̄k↑(τ)ψ̄q−k↓(τ) +
∑
q,k

∆∗
q(τ)ψq−k↓(τ)ψk↑(τ)

]

(h) Before we proceed, let us pause to try to give a physical interpretation to this new field
∆q(τ). From the second result of part (f), we can guess that the average

〈∆q(τ)〉 ∝ 〈ρq(τ)〉 =
∑
k

〈ψq−k↓(τ)ψk↑(τ)〉

But what is the meaning of the Grassmann average on the right? Since ψq−k↓(τ) is associated
with the operator cq−k↓ and ψk↑(τ) is associated with the operator ck↑, we can make the
further guess:

〈∆q(τ)〉 ∝
∑
k

〈cq−k↓ck↑〉

We will study the formal details of how to go from Grassmann averages to operator averages
next lecture, but for now we can accept the above result as sensible. Transform back to
position space, and show that:∑

k

〈cq−k↓ck↑〉 =
∑

i

e−iq·xi〈ci↓ci↑〉

Answer: ∑
k

〈cq−k↓ck↑〉 =
1

N

∑
i,j

∑
k

e−i(q−k)·xi−ik·xj〈ci↓cj↑〉

=
1

N

∑
i,j

∑
k

e−iq·xieik·(xi−xj)〈ci↓cj↑〉 =
∑

i

e−iq·xi〈ci↓ci↑〉

The quantity 〈ci↓ci↑〉 is just the expectation value for destroying a pair of opposite spin
electrons at site i, and the above result is just the Fourier transform of this expectation
value. In other words, 〈∆q(τ)〉 is associated with a pair of opposite spin electrons having
total momentum q. The electron pair behaves like a single bosonic particle, and thus the
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field that describes them is not Grassmann, but a complex number ∆q(τ). These are the
famous Cooper pairs responsible for superconductivity.

(i) The functions ∆q(τ), ψ̄kσ(τ), and ψkσ(τ) over the continuous variable τ can be Fourier
transformed to a discrete frequency representation. This will make performing the integrals
in the partition function easier. Let us define the expansions:

ψ̄kσ(τ) =
∞∑

n=−∞

eiωnτ ψ̄kσ(ωn)

ψkσ(τ) =
∞∑

n=−∞

e−iωnτψkσ(ωn)

∆q(τ) =
∞∑

n=−∞

e−iνnτ∆q(νn)

Since ψ̄kσ(β) = −ψ̄kσ(0) and ψkσ(β) = −ψkσ(0), the ωn are fermionic Matsubara frequencies:

ωn =
(2n+ 1)π

β
, n = 0,±1,±2, . . .

On the other hand, ∆q(β) = ∆q(0), so the νn are bosonic Matsubara frequencies:

νn =
2nπ

β
, n = 0,±1,±2, . . .

Note the orthogonality relations:∫ β

0

dτ ei(ωn−ωm)τ = βδmn,

∫ β

0

dτ ei(νn−νm)τ = βδmn

Show that:

S = β
∑

n

∑
k,σ

ψ̄kσ(ωn) (iωn − ξk)ψkσ(ωn)− βN

g

∑
m

∑
q

∆∗
q(νm)∆q(νm)

+ β
∑
n,m

∑
q,k

∆q(νm)ψ̄k↑(ωn)ψ̄q−k↓(νm − ωn) + β
∑
n,m

∑
q,k

∆∗
q(νm)ψq−k↓(νm − ωn)ψk↑(ωn)

Answer: Let us transform each term in the action separately:∫ β

0

dτ
∑
k,σ

ψ̄kσ(τ)

(
− ∂

∂τ
− ξk

)
ψkσ(τ) =

∑
n,n′

∑
k,σ

∫ β

0

dτ ei(ωn−ωn′ )τ ψ̄kσ(ωn) (iωn′ − ξk)ψkσ(ωn′)

= β
∑

n

∑
k,σ

ψ̄kσ(ωn) (iωn − ξk)ψkσ(ωn)

−N
g

∫ β

0

dτ
∑
q

∆∗
q(τ)∆q(τ) = −N

g

∑
m,m′

∑
q

∫ β

0

dτ ei(νm−νm′ )τ∆∗
q(νm)∆q(νm′)
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= −βN
g

∑
m

∑
q

∆∗
q(νm)∆q(νm)

∫ β

0

dτ
∑
q,k

∆q(τ)ψ̄k↑(τ)ψ̄q−k↓(τ) =
∑

m,n,n′

∑
q,k

∫ β

0

dτ ei(ωn+ωn′−νm)τ∆q(νm)ψ̄k↑(ωn)ψ̄q−k↓(ωn′)

= β
∑
n,m

∑
q,k

∆q(νm)ψ̄k↑(ωn)ψ̄q−k↓(νm − ωn)

∫ β

0

dτ
∑
q,k

∆∗
q(τ)ψq−k↓(τ)ψk↑(τ) =

∑
m,n,n′

∑
q,k

∫ β

0

dτ ei(νm−ωn′−ωn)τ∆∗
q(νm)ψq−k↓(ωn′)ψk↑(ωn)

= β
∑
n,m

∑
q,k

∆∗
q(νm)ψq−k↓(νm − ωn)ψk↑(ωn)

The partition function is obtained by integrating over all the Fourier components ∆∗
q(νm),

∆q(νm), ψ̄kσ(ωn), and ψkσ(ωn):

Z =

∫
eS

[∏
m,q

d∆∗
q(νm) d∆q(νm)

][∏
n,k,σ

dψ̄kσ(ωn) dψkσ(ωn)

]

The action S above describes a complicated theory, and it is not possible to solve the partition
function exactly. Thus we are forced to make some approximation. The simplest one is mean-
field theory: we look for paths that maximize the action S, since these contribute most to
the partition function Z. Let us concentrate on the ∆q(τ) field, since we saw above that it is
related to the presence of Cooper pairs in the system. Typically fluctuations cost energy, so
it is reasonable to assume that the field configuration that maximizes S will be uniform in
space and “time” τ . Thus we will focus only on the static part of the action S, i.e. the part
involving the q = 0, νm = 0 component of the field. This we can do by setting ∆q(νm) = 0
if q, νm 6= 0. Let us denote the ∆q=0(νm = 0) component as ∆. The resulting simplified
action and partition function look like:

S = β
∑

n

∑
k,σ

ψ̄kσ(ωn) (iωn − ξk)ψkσ(ωn)− βN

g
∆∗∆

+ β
∑

n

∑
k

∆ψ̄k↑(ωn)ψ̄−k↓(−ωn) + β
∑

n

∑
k

∆∗ψ−k↓(−ωn)ψk↑(ωn)

Z =

∫
eS d∆∗ d∆

[∏
n,k,σ

dψ̄kσ(ωn) dψkσ(ωn)

]

From this action we can derive the mean-field theory of superconductivity, first studied in a
different form by Bardeen, Cooper, and Schrieffer.
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(j) Show the simplified action S can be written in the following matrix product form:

S = −βN
g

∆∗∆ + β
∑

n

∑
k

(
ψ̄k↑(ωn) ψ−k↓(−ωn)

)(iωn − ξk ∆
∆∗ iωn + ξk

)(
ψk↑(ωn)

ψ̄−k↓(−ωn)

)

Answer:

S =− βN

g
∆∗∆ + β

∑
n

∑
k,σ

ψ̄kσ(ωn) (iωn − ξk)ψkσ(ωn)

+ β
∑

n

∑
k

∆ψ̄k↑(ωn)ψ̄−k↓(−ωn) + β
∑

n

∑
k

∆∗ψ−k↓(−ωn)ψk↑(ωn)

=− βN

g
∆∗∆ + β

∑
n

∑
k

ψ̄k↑(ωn) (iωn − ξk)ψk↑(ωn)

+ β
∑

n

∑
k

ψ̄k↓(ωn) (iωn − ξk)ψk↓(ωn)

+ β
∑

n

∑
k

∆ψ̄k↑(ωn)ψ̄−k↓(−ωn) + β
∑

n

∑
k

∆∗ψ−k↓(−ωn)ψk↑(ωn)

Note that since the sum over n runs from −∞ to ∞, and ωn = (2n + 1)π/β, the following
identity is true:

∑
n f(ωn) =

∑
n f(−ωn) for any function f . Similarly, since k ∈ B.Z. implies

that −k ∈ B.Z., we have:
∑

k f(k) =
∑

k f(−k). Thus we can write:

β
∑

n

∑
k

ψ̄k↓(ωn) (iωn − ξk)ψk↓(ωn) = β
∑

n

∑
k

ψ̄−k↓(−ωn) (−iωn − ξ−k)ψ−k↓(−ωn)

= β
∑

n

∑
k

ψ−k↓(−ωn) (iωn + ξk) ψ̄−k↓(−ωn)

where we have used the fact that ξ−k = ξk and the anticommutation of Grassmann-valued
functions. Plugging this back into the action we have:

S =− βN

g
∆∗∆ + β

∑
n

∑
k

ψ̄k↑(ωn) (iωn − ξk)ψk↑(ωn)

+ β
∑

n

∑
k

ψ−k↓(−ωn) (iωn + ξk) ψ̄−k↓(−ωn)

+ β
∑

n

∑
k

∆ψ̄k↑(ωn)ψ̄−k↓(−ωn) + β
∑

n

∑
k

∆∗ψ−k↓(−ωn)ψk↑(ωn)

=− βN

g
∆∗∆ + β

∑
n

∑
k

(
ψ̄k↑(ωn) ψ−k↓(−ωn)

)(iωn − ξk ∆
∆∗ iωn + ξk

)(
ψk↑(ωn)

ψ̄−k↓(−ωn)

)

(k) If η̄ and χ are vectors of Grassmann numbers, we know the basic identity:∫
e−η̄T Mχdη̄ dχ = detM
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Using this identity, simplify Z by performing the integrals over the Grassmann variables
ψ̄kσ(ωn) and ψkσ(ωn) for all k, σ, and n. You should find the following result:

Z =

∫
eS̃(∆∗,∆)d∆∗ d∆

where the effective action S̃ depending only on ∆∗ and ∆ is given by:

S̃(∆∗,∆) = −βN
g
|∆|2 +

∑
n,k

ln(−β2ω2
n − β2ξ2

k − β2|∆|2)

Show that S̃(∆∗,∆) can be written:

S̃(∆∗,∆) = S̃(0, 0)− βN

g
|∆|2 +

∑
n,k

ln

(
ω2

n + ξ2
k + |∆|2

ω2
n + ξ2

k

)

where S̃(0, 0) is a constant independent of ∆ or ∆∗.

Answer:

Z =

∫
eS d∆∗ d∆

[∏
n,k,σ

dψ̄kσ(ωn) dψkσ(ωn)

]

=

∫
e−

βN
g
|∆|2
∏
n,k

exp

[
β
(
ψ̄k↑(ωn) ψ−k↓(−ωn)

)(iωn − ξk ∆
∆∗ iωn + ξk

)(
ψk↑(ωn)

ψ̄−k↓(−ωn)

)]

·

[∏
n,k,σ

dψ̄kσ(ωn) dψkσ(ωn)

]
d∆∗ d∆

=

∫
e−

βN
g
|∆|2
∏
n,k

det

[
β

(
iωn − ξk ∆

∆∗ iωn + ξk

)]
d∆∗ d∆

=

∫
e−

βN
g
|∆|2
∏
n,k

(
−β2ωn − β2ξ2

k − β2|∆|2
)
d∆∗ d∆

=

∫
e−

βN
g
|∆|2+

P
n,k ln(−β2ωn−β2ξ2

k−β2|∆|2)d∆∗ d∆ =

∫
eS̃(∆∗,∆)d∆∗ d∆

Now we write:

S̃(∆∗,∆) = −βN
g
|∆|2 +

∑
n,k

ln(−β2ω2
n − β2ξ2

k − β2|∆|2)

= −βN
g
|∆|2 +

∑
n,k

ln

[(
−β2ω2

n − β2ξ2
k

)(
1 +

|∆|2

ω2
n + ξ2

k

)]
=
∑
n,k

ln
(
−β2ω2

n − β2ξ2
k

)
− βN

g
|∆|2 +

∑
n,k

ln

(
1 +

|∆|2

ω2
n + ξ2

k

)
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= S̃(0, 0)− βN

g
|∆|2 +

∑
n,k

ln

(
ω2

n + ξ2
k + |∆|2

ω2
n + ξ2

k

)

where S̃(0, 0) =
∑

n,k ln (−β2ω2
n − β2ξ2

k).

(l) Ignoring any overall constant factors multiplying the partition function, show that you
can write:

Z =

∫
e−βF (|∆|)d∆∗d∆

where:

F (|∆|) =
N

g
|∆|2 − 1

β

∑
n,k

ln

(
ω2

n + ξ2
k + |∆|2

ω2
n + ξ2

k

)
Mean-field theory tells us the free energy A = −(1/β) lnZ is approximately given by F
evaluated at |∆| = |∆|min, where F has its minimum value:

Z ≈ e−βF (|∆|min) ⇒ A = − 1

β
lnZ ≈ F (|∆|min)

To see how |∆|min behaves, let us expand F (|∆|) around |∆| = 0. Show that up to order
|∆|4, the expansion is given by:

F =
1

2
r(T )|∆|2 + u(T )|∆|4 + · · ·

r(T ) =
2N

g
− 2kBT

∑
n,k

1

ω2
n + ξ2

k

≡ 2N

g
− C(T )

u(T ) =
kBT

2

∑
n,k

1

(ω2
n + ξ2

k)
2
≡ D(T )

where clearly the functions C(T ) and D(T ) are both positive. (Remember that the Mat-
subara frequencies ωn depend on β, which is why the sums C(T ) and D(T ) are functions
of temperature). It is possible to evaluate the Matsubara and Brillouin zone sums and find
these functions (using techniques we will discuss in lecture), but here we do not need the
precise values. It is enough to know that the function r(T ) changes sign from positive to
negative as T is decreased. To demonstrate this, argue that C(T ) → ∞ as T → 0 and
C(T ) → 0 as T →∞.

Answer: Ignoring the overall factor of eS̃(0,0) in front, we have:

Z =

∫
exp

[
−βN

g
|∆|2 +

∑
n,k

ln

(
ω2

n + ξ2
k + |∆|2

ω2
n + ξ2

k

)]
d∆∗ d∆

=

∫
exp

[
−β

(
N

g
|∆|2 − 1

β

∑
n,k

ln

(
ω2

n + ξ2
k + |∆|2

ω2
n + ξ2

k

))]
d∆∗ d∆ =

∫
e−βF (|∆|)d∆∗d∆
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Note the Taylor expansion:

ln

(
ω2

n + ξ2
k + |∆|2

ω2
n + ξ2

k

)
= ln

(
1 +

|∆|2

ω2
n + ξ2

k

)
≈ |∆|2

ω2
n + ξ2

k

− 1

2

|∆|4

(ω2
n + ξ2

k)
2

Plugging this into F (|∆|) immediately gives us r(T ) and u(T ) in the form quoted above.
Now let us look at C(T ):

C(T ) = 2kBT
∑
n,k

1

ω2
n + ξ2

k

= 2kBT
∑
k

tanh(ξk/2kBT )

2ξkkBT
=
∑
k

tanh(ξk/2kBT )

ξk

For T →∞, we have tanh(ξk/2kBT ) ≈ ξk/2kBT , and

C(T →∞) ≈
∑
k

1

2kBT
→ 0

For T → 0, we have tanh(ξk/2kBT ) → 1, and

C(T → 0) ≈
∑
k

1

ξk

This sum is dominated by the region near the Fermi surface, where Ek ≈ µ and ξk = Ek−µ ≈
0. Thus C(T → 0) →∞.

(m) For r(T ) > 0 the minimum of F occurs at |∆|min = 0, while for r(T ) < 0 the minimum
is at some |∆|min 6= 0. We have a very familiar result: a second-order phase transition with
a complex order parameter ∆, whose magnitude |∆| gets a nonzero value below a certain
temperature Tc, defined by the condition r(Tc) = 0. For temperatures just below Tc, where
|∆| is small, show that |∆| ∝ (Tc − T )β. Find β.

Answer: Expanding r(T ) and u(T ) to lowest-order around T = Tc, and using the fact that
r(Tc) = 0, we have:

r(T ) ≈ r′(Tc)(T − Tc) + · · · u(T ) ≈ u(Tc) + · · ·

where from the results of part (l) we can assume r′(Tc), u(Tc) > 0. Plugging these expansions
into the free energy, we get:

F =
1

2
r′(Tc)(T − Tc)|∆|2 + u(Tc)|∆|4 + · · ·

The minimum occurs at

∂F

∂|∆|
= 0 ⇒ r′(Tc)(T − Tc)|∆|+ 4u(Tc)|∆|3 = 0

For T < Tc this has a nonzero solution at:

|∆| =

√
r′(Tc)(Tc − T )

4u(Tc)
∝ (Tc − T )1/2
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Thus β = 1/2, the typical mean-field result.

In conclusion, we have started from the microscopic Hamiltonian of a lattice electron gas
with a local attractive interaction, and derived an effective field theory in terms of a complex
order parameter ∆, where |∆|2 is proportional to the density of Cooper pairs. As we saw
in part (l), this field theory has the form of a Landau-Ginzburg Hamiltonian near Tc, where
|∆|2 is small. We have already studied the Landau-Ginzburg theory for superconductors in
Problem Set 4, but here we can see directly how such a theory is derived. We can even
find exact expressions for the coefficients r(T ), u(T ), . . . in terms of the parameters in the
microscopic Hamiltonian.
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