PHYS 414: Mastering the master equation

The master equation has various forms and many implications. This write-up summarizes
the ones we have seen so far in class.

1. Master equation in terms of the W matrix

The original form is a time evolution equation for the probability p,,(t) of being in state m at
time ¢, defined over an ensemble which has a distribution of states p,,(0) at time zero:

dg;: = Z: Wmm’pm’ - Z Wm’mpm : (1)
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The first sum on the right-hand side is the total probability flowing into state m, and the second
one is the total probability flowing out. Note W,,,,,0t is the probability of making a transition
n — m over a small time interval d¢, so Zm Wimdt = 1. Thus each column of the W matrix
(multiplied by 6t) sums to 1. A stationary distribution p;, is defined by dp?, /dt = 0, so for p;, the
gain is balanced by the loss.

2. Master equation in terms of the {2 matrix

Eq. (1) can be simplified by rewriting the right-hand side:
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From the property 6t >, Wy, = 1 we see that ), €., = 0. Each column of the  matrix
sums to zero.
The solution of the master equation for an arbitrary ensemble is:

pm(t) =[], P (0), @)

m/

where exp({2t) is the matrix exponential of {). For a pure ensemble, where all copies are prepared
in the same state n, p,,/(0) = 6,5, and thus p,,(t) = [em]mn = Pmn(t). So the individual
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components of the matrix exponential P(t) = exp({2t) correspond to pure ensemble probabilities
Pmn(t). The master equation can thus be written more compactly as

C:Z—I;:Qp or CZ?—QP (5)
Here p is a vector with components p,,. The difference between these two forms is that the
first corresponds to an arbitrary ensemble, and the second one encompasses all possible pure
ensembles. From Eq. (5) one can see that a stationary distribution p® satisfying dp®/dt = 0 is
a right eigenvector of {2 with eigenvalue zero: 2p® = 0. The second equation in Eq. (5), with
the matrix components written out explicitly, gives us a master equation for the pure ensemble
probabilities p,,, (t):

dpmn
The initial conditions for this equation are pmn(O) = 0mn. Note that once you know the pure
ensemble probabilities p,,,(t) = [exp(£2t)],,,, you can also calculate p,,(t) for any arbitrary

ensemble using p,,(t) = >, Pmn(t)Pn(0).

3. Adjoint master equation

Let us take the transpose of both sides of dP/dt = Q) P. This gives dPT /dt = PTQT. In terms
of individual components, the resulting equation is known as the adjoint master equation:

Using the definition of €2 from Eq. (3), this can also be rewritten in terms of the W matrix com-
ponents:

dpmn Z Pmm/ Qm 'n

= pannn + Z pmm’Qm’n
e (8)

= —DPmn Z an + Z pmm’Wm’n

l#£n m/#n
= Z Pmm/ pmn Wm n:

The equality between the last two lines uses the fact that the m’ = n term in the sum in the last
line equals zero. Thus there are two forms of the master equation for p,,, (), summarized here
in both €2 and W versions:
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All of these are equivalent formulations, but some are more useful than others in various appli-
cations.

4. Survival probabilities and mean first passage times

One application of the adjoint master equation is in calculating the survival probability U, (¢),
or the probability that if you start in state n at ¢t = 0 (a pure ensemble), you have never visited
state s in the time interval ¢. To calculate this probability, it is convenient to make the target state
s a sink. In other words, set all the outgoing links W,,; which allow transitions out of s to zero.
This way if you reach s, you will stay there. Assuming s is the only sink in the system (the simple
case which we will consider here), and the network is connected, then the survival probability
Usn(0) = 1 and Uy, (00) = 0 for any n # s: the chances of survival are zero in the long time
limit, since the system will eventually visit s. Similarly U, (¢) = 0 for all ¢: if you start in s, by
definition your survival probability is zero.

The survival probability U, (t) can be related to the probabilities p,,, () as follows:

m#s
The probability of never having reached s by time ¢ is just the sum over the probabilities of being

in any state m # s at time ¢. By taking the sum over m # s of the adjoint master equation in
Eq. (7), one finds an equation for Uy, (?):

dg;:m = Z Usm’Qm’n = Z Usm/Qm’n- (11)
m/ m/#s

The second equality is due to Ug; = 0.

As time passes Uy, (1) decreases, since at each moment there is some probability of the system
reaching state s. The fraction of systems in the ensemble that reach s between ¢ and ¢ + dt is
given by Uy, (t) — Uy, (t + dt) = dt(—dUs,/dt) = dt fs,(t). The latter quantity f;,(t) is the first
passage time (FPT) distribution, the probability per unit time of reaching s for the first time in the
interval ¢ to ¢ 4 dt, assuming you started at n at time ¢ = 0. The mean first passage time (MFPT)
Tsn 1S just the average time it takes to first reach s. Note that for n = s, f,s(t) = §(¢) and 75, = 0.
If you are at s, the distribution of times to reach s is just a delta function at ¢ = 0, and the mean
time to reach s is zero.

In general 7, is an average over the FPT distribution,

0 0 dt 0

The last equality follows from integration by parts and the fact that Uy, (c0) = 0. For n # s, let
us integrate both sides of Eq. (11) over ¢ from 0 to oo, yielding the following equation:

Usn(oo) - Usn<0) - Z Tsm’Qm’n

m/#s
—1= Z 7—sm’Qm/n
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This equation, valid for all n # s, provides a way of recursively calculating any MFPT 7.
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