
PHYS 414: Mastering the master equation
The master equation has various forms and many implications. This write-up summarizes

the ones we have seen so far in class.

1. Master equation in terms of the W matrix

The original form is a time evolution equation for the probability pm(t) of being in state m at
time t, de�ned over an ensemble which has a distribution of states pn(0) at time zero:

dpm
dt

=
∑
m′

Wmm′pm′︸ ︷︷ ︸
gain for state m

−
∑
m′

Wm′mpm︸ ︷︷ ︸
loss for state m

. (1)

The �rst sum on the right-hand side is the total probability �owing into state m, and the second
one is the total probability �owing out. Note Wmnδt is the probability of making a transition
n → m over a small time interval δt, so

∑
mWmnδt = 1. Thus each column of the W matrix

(multiplied by δt) sums to 1. A stationary distribution psm is de�ned by dpsm/dt = 0, so for psm the
gain is balanced by the loss.

2. Master equation in terms of the Ω matrix

Eq. (1) can be simpli�ed by rewriting the right-hand side:

dpm
dt

=
∑
m′ 6=m

Wmm′pm′ +Wmmpm −
∑
m′

Wm′mpm

=
∑
m′ 6=m

Wmm′pm′ −
∑
m′ 6=m

Wm′mpm

=
∑
m′ 6=m

Wmm′pm′ +

[
−
∑
` 6=m

W`m

]
pm

=
∑
m′

Ωmm′pm′ ,

(2)

where

Ωmm′ ≡

{
Wmm′ m 6= m′

−
∑

`6=mW`m m = m′ . (3)

From the property δt
∑

m′ Wm′m = 1 we see that
∑

m′ Ωm′m = 0. Each column of the Ω matrix
sums to zero.

The solution of the master equation for an arbitrary ensemble is:

pm(t) =
∑
m′

[
eΩt
]
mm′ pm′(0), (4)

where exp(Ωt) is the matrix exponential of Ω. For a pure ensemble, where all copies are prepared
in the same state n, pm′(0) = δm′,n, and thus pm(t) =

[
eΩt
]
mn
≡ pmn(t). So the individual
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components of the matrix exponentialP (t) ≡ exp(Ωt) correspond to pure ensemble probabilities
pmn(t). The master equation can thus be written more compactly as

dp

dt
= Ωp or

dP

dt
= ΩP. (5)

Here p is a vector with components pm. The di�erence between these two forms is that the
�rst corresponds to an arbitrary ensemble, and the second one encompasses all possible pure
ensembles. From Eq. (5) one can see that a stationary distribution ps satisfying dps/dt = 0 is
a right eigenvector of Ω with eigenvalue zero: Ωps = 0. The second equation in Eq. (5), with
the matrix components written out explicitly, gives us a master equation for the pure ensemble
probabilities pmn(t):

dpmn(t)

dt
=
∑
m′

Ωmm′pm′n. (6)

The initial conditions for this equation are pmn(0) = δm,n. Note that once you know the pure
ensemble probabilities pmn(t) = [exp(Ωt)]mn, you can also calculate pm(t) for any arbitrary
ensemble using pm(t) =

∑
n pmn(t)pn(0).

3. Adjoint master equation

Let us take the transpose of both sides of dP/dt = ΩP . This gives dP T/dt = P TΩT . In terms
of individual components, the resulting equation is known as the adjoint master equation:

dpmn

dt
=
∑
m′

pmm′Ωm′n. (7)

Using the de�nition of Ω from Eq. (3), this can also be rewritten in terms of the W matrix com-
ponents:

dpmn

dt
=
∑
m′

pmm′Ωm′n

= pmnΩnn +
∑
m′ 6=n

pmm′Ωm′n

= −pmn

∑
`6=n

W`n +
∑
m′ 6=n

pmm′Wm′n

=
∑
m′

(pmm′ − pmn)Wm′n.

(8)

The equality between the last two lines uses the fact that the m′ = n term in the sum in the last
line equals zero. Thus there are two forms of the master equation for pmn(t), summarized here
in both Ω and W versions:
dpmn

dt
=
∑
m′

Ωmm′pm′n,
dpmn

dt
=
∑
m′

[Wmm′pm′n −Wm′mpmn] regular master equation

dpmn

dt
=
∑
m′

pmm′Ωm′n,
dpmn

dt
=
∑
m′

(pmm′ − pmn)Wm′n. adjoint master equation

(9)
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All of these are equivalent formulations, but some are more useful than others in various appli-
cations.

4. Survival probabilities and mean �rst passage times

One application of the adjoint master equation is in calculating the survival probabilityUsn(t),
or the probability that if you start in state n at t = 0 (a pure ensemble), you have never visited
state s in the time interval t. To calculate this probability, it is convenient to make the target state
s a sink. In other words, set all the outgoing links Wms which allow transitions out of s to zero.
This way if you reach s, you will stay there. Assuming s is the only sink in the system (the simple
case which we will consider here), and the network is connected, then the survival probability
Usn(0) = 1 and Usn(∞) = 0 for any n 6= s: the chances of survival are zero in the long time
limit, since the system will eventually visit s. Similarly Uss(t) = 0 for all t: if you start in s, by
de�nition your survival probability is zero.

The survival probability Usn(t) can be related to the probabilities pmn(t) as follows:

Usn(t) =
∑
m6=s

pmn(t). (10)

The probability of never having reached s by time t is just the sum over the probabilities of being
in any state m 6= s at time t. By taking the sum over m 6= s of the adjoint master equation in
Eq. (7), one �nds an equation for Usn(t):

dUsn

dt
=
∑
m′

Usm′Ωm′n =
∑
m′ 6=s

Usm′Ωm′n. (11)

The second equality is due to Uss = 0.
As time passes Usn(t) decreases, since at each moment there is some probability of the system

reaching state s. The fraction of systems in the ensemble that reach s between t and t + dt is
given by Usn(t)− Usn(t + dt) ≈ dt(−dUsn/dt) ≡ dtfsn(t). The latter quantity fsn(t) is the �rst
passage time (FPT) distribution, the probability per unit time of reaching s for the �rst time in the
interval t to t + dt, assuming you started at n at time t = 0. The mean �rst passage time (MFPT)
τsn is just the average time it takes to �rst reach s. Note that for n = s, fss(t) = δ(t) and τsn = 0.
If you are at s, the distribution of times to reach s is just a delta function at t = 0, and the mean
time to reach s is zero.

In general τsn is an average over the FPT distribution,

τsn =

∫ ∞

0

dt tfsn(t) = −
∫ ∞

0

dt t
dUsn

dt
=

∫ ∞

0

dt Usn. (12)

The last equality follows from integration by parts and the fact that Usn(∞) = 0. For n 6= s, let
us integrate both sides of Eq. (11) over t from 0 to∞, yielding the following equation:

Usn(∞)− Usn(0) =
∑
m′ 6=s

τsm′Ωm′n

−1 =
∑
m′ 6=s

τsm′Ωm′n

(13)

This equation, valid for all n 6= s, provides a way of recursively calculating any MFPT τsn.
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