
BIOREPS Problem Set #13
How a well-adapted immune system is organized

1 Background

The adaptive immune system protects organisms from a great variety of pathogens by maintain-
ing a population of specialized cells, each speci�c to particular challenges. Together these cells
cover the array of potential threats. To recognize pathogens, the immune system relies on recep-
tor proteins expressed on the surface s main constituents, the B and T lymphocytes. These re-
ceptors interact with antigens (small molecular elements making up pathogens), recognize them
through speci�c binding, and initiate the immune response. Each lymphocyte expresses a unique
receptor formed from random combinations encoded in the genome. The receptors later undergo
selection through the death and division of the lymphocytes that express them, as well as muta-
tions in the case of B lymphocytes. The diversity of the receptor repertoire determines the range
of threats that the adaptive immune system can target in relation to the adaptive repertoire and
the pathogenic environment.The adaptive immune system uses the experience of past infections
to prepare its limited repertoire of specialized receptorsto protect organisms from future threats.
We will attempt to calculate the best, most e�cient way of doing this. Building a theoretical
framework from �rst principles, we can predict the composition of receptor repertoires that are
optimally adapted to minimize the cost of infections from a given pathogenic environment. A
naive repertoire can reach these optima through a biologically plausible competitive mechanism.
Our �ndings will begin to explain how limited populations of immune receptors can self-organize
to provide e�ective immunity against highly diverse pathogens.

To �nd the optimal repertoire distribution we must consider the nature of antigen-receptor
interactions and a penalty that the immune system pays for not recognizing antigens. This
penalty must re�ect the facts that recognition should happen within a reasonable time, before
the pathogen colony can signi�cantly increase its size; the interactions between the immune re-
ceptors and antigen are probabilistic; and not all antigens are equally frequent. We assume that,
although the immune system cannot predict precisely which antigens it will encounter and when,
it incorporates an estimate of the probabilities of their occurrences. We also take these probabil-
ities to be constant in time. This is an idealization grounded in a separation of timescales, which
assumes the distribution of antigens remains constant on timescales on which the immune system
adapts.

During its time in the periphery, an antigen a will encounter and possibly interact with recep-
tors at a rate λ(t) that increases with time as the pathogen population grows. fr,a is the probability
with wchich that antigen is recognized by the receptor, in other words the chance that there will
be a reaction to a given encounter. For our purposes fr,a will be set at 1, meaning that everytime
a receptor encounters the correct antigen it detects it and marks it for destruction.

Mathematically, let us de�ne the encounter rate, λ as equal to the inital concentration of cells
at time = 0, times the growth of the antigen: λa(t) = λa(0)eν

′
at
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Figure 1: Schematic of a statistical model of antigen recognition by the adaptive immune system.
After infection, antigen a encounters immune receptor r at random with a rate λ(t). An encounter
leads to a successful recognition with a probability fr,a that re�ects the matching between a given
antigen receptor pair. Image credit: Ref. [1].
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2 Questions

2.1 Finding the harm done

a) During its time in the periphery, an antigen a will encounter and possibly interact with re-
ceptors at a rate λa(t),that increases with time as the pathogen population grows. Each en-
counter will occur with a di�erent receptor r drawn from Pr. The mean number of encounters
between antigens and receptors after a time t, which we call e�ect time, is given as ma(t) =
λa(0)(eν

′
at − 1)/ν ′a, where λa(0) is the constant rate λa(t) at t = 0. To �nd the cost function, we

need to �rst derive ta(m) in terms of ma. In other words, we need to �nd the inverse function of
ma(t)
Hint: Take log on both sides of the equation. To make your life easier, assume t� 1

ν′a
, so you can

ignore some terms in order to simpli�ed the expression.

b) The more antigens there are at the time of the immune reaction,the more damage they can
potentially do. The cost function is also expected to grow exponentially in time:

Fa(t) = Fa(0)eν
′
at (1)

Substitute the expression for ta(m) into the above equation to derive the cost function in terms
of ma. Please show that Fa(t) ∝ mα

a , with α = νa/ν
′
a.
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2.2 Finding the average harm

In the previous part, we derived Fa, the harm done when the �rst recognition is at time t. In
order to �nd the mean harm done, F̄a, we must perform a time integral of the product of harm
done at time t, Fa(t), and the probability that the �rst recognition is at time t, Ha(t).

That is,
F̄a =

∫ ∞
0

dtHa(t)Fa(t) (2)

a) We need to calculateHa(t)dt, the probability that the �rst recognition of the the antigen is be-
tween time t and time t+dt. It is easiest to approach this problem by discretizing the interval into
n timesteps of length dt and then later �nding the limit as these timesteps become in�nitesimally
small. Ha(t)dt is a product of three parameters

1. The probability of an encounter between time t and time t+ dt

2. The probability a given receptor recognizes antigen a

3. The probability of there not being any prior recognition events

The �rst two parameters we’ve dealt with already in this problem set, but the third parameter is
less straightforward. One way to think of this third parameter is to picture it as the product of a
recognition event not occurring in each of the n timesteps between time 0 and time t.

Hint: For this third parameter, you can ignore all terms of order O(dt2) or higher. This will
result in the probability of there not being any prior recognition events as 1 minus a sum of n
terms. If you use the identity 1− x ≈ e−x for small x, and take the limit of the sum as dt is made
in�nitesimally small, you should ultimately �nd that

Ha(t) = λa(t)Pae
−Pama(t) (3)

and therefore
F̄a =

∫ ∞
0

λa(t)Pae
−Pama(t)Fa(t) (4)

2.3 Minimizing the cost function

Suppose that there are two antigens in the body antigen a and antigen b. These antigens have
corresponding receptors in our bodies speci�cally engineered to bind with and mark that antigen
for destruction via the immune system. Therefore for each antigen we have, there exists a unique
receptor, in our case: receptors a and b. With these given starting conditions, what is the optimal
repertoire for the body to defend itself against attack. In other words, what is the most e�cient
and e�ective balance of receptor to have in order to �ght any given attack. In order to calculate
for optimality, we must �rst develop a Cost function based on the the probability that pathogen
will show up and the harm that it will subsequently cause if allowed to go on unchecked. This
"harm" that the pathogen creates has two components to it: µ is the virulence, or how deadly
a pathogen is and Q we will simplify both of these into κ = µQa. Harm, as used in our cost
function is dependent on how many there are and how long it is not detected, not on virulence µ
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Now that we have solved for the harm functions for an average number of encounters and
before the �rst recognition event, we are now tasked with the problem of �nding the probability
of receptors for a given antigen. To solve this minimalization problem, we need to pull from parts
2.1 and 2.3 and make certain substitutions. The main function we will work with will be labeled
as the cost function where

Cost ≡ 〈F 〉 =
∑
a

QaF̄aPa (5)

a) From equation 4 use Jacobians to convert F̄a(t) → F̄a(m) and substitute this into the Cost
function.

b) From part 2.1, substitute Fa(t) ∝ mα
a for the value of Fa(m) and �nally arrive at the following

equation:

Cost =
∑
a

κaPa

∫ ∞
0

e−Pammα
adm (6)

c) From this simpli�cation, we will expand equation (4) to arrive at the following result:

Cost = κaPa

∫ ∞
0

e−Pammαdm+ κbPb

∫ ∞
0

e−Pbmmαdm (7)

The rate of harm for a respective pathogen is νa, and the rate of growth for the same pathogen
as ν ′a. Combining these two variable we get: α = νa/ν

′
a Again, to make the calculations stom-

achable, we will assume that for every pathogen: νa = ν ′a. Therefore, α is always equal to 1.

Show that this Cost equation Equals the following equation.

Cost = κa/Pa + κb/Pb (8)

d) Now that we have a simpli�ed equation for the Cost function, we can solve it for Pa and Pb.
To sovle this equation, take the derivative of equation (8) with respect to Pa and set it equal to 0.
solve for Pa. hint: because this is a two anitgen system let Pb = 1− Pa

Conditions: κa = 10 and κb = 3 While these numbers are arbitrary, they are suppose to
represent the products of the virulency and the frequency of these diseases.

The result of this calculation should produce a larger Pa value than Pb because of the larger κa
value. This P value represents the probability of �nding a receptor for antigen a in the repertoire
of the immune system.
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